Innovative Technology for Building Ultralow-Loss Integrated Photonic Circuits

Revolutionary Expertise for Constructing Ultralow-Loss Built-in Photonic Circuits


Integrated Silicon Nitride Photonic Chips

Built-in silicon nitride photonic chips with meter-long spiral waveguides. Credit score: Jijun He, Junqiu Liu (EPFL)

Encoding info into gentle, and transmitting it by optical fibers lies on the core of optical communications. With an extremely low lack of 0.2 dB/km, optical fibers constituted of silica have laid the foundations of in the present day’s world telecommunication networks and our info society.

Such ultralow optical loss is equally important for built-in photonics, which allow the synthesis, processing and detection of optical alerts utilizing on-chip waveguides. At present, a lot of revolutionary applied sciences are primarily based on built-in photonics, together with semiconductor lasers, modulators, and photodetectors, and are used extensively in information facilities, communications, sensing and computing.

Built-in photonic chips are often constituted of silicon that’s plentiful and has good optical properties. However silicon can’t do every thing we want in built-in photonics, so new materials platforms have emerged. Considered one of these is silicon nitride (Si3N4), whose exceptionally low optical loss (orders of magnitude decrease than that of silicon), has made it the fabric of alternative for purposes for which low loss is crucial, resembling narrow-linewidth lasers, photonic delay traces, and nonlinear photonics.

Now, scientists within the group of Professor Tobias J. Kippenberg at EPFL’s College of Fundamental Sciences have developed a brand new expertise for constructing silicon nitride built-in photonic circuits with document low optical losses and small footprints. The work is revealed in Nature Communications.

Combining nanofabrication and materials science, the expertise is predicated on the photonic Damascene course of developed at EPFL. Utilizing this course of, the workforce made built-in circuits of optical losses of only one dB/m, a document worth for any nonlinear built-in photonic materials. Such low loss considerably reduces the facility price range for constructing chip-scale optical frequency combs (“microcombs”), utilized in purposes like coherent optical transceivers, low-noise microwave synthesizers, LiDAR, neuromorphic computing, and even optical atomic clocks. The workforce used the brand new expertise to develop meter-long waveguides on 5×5 mm2 chips and high-quality-factor microresonators. In addition they report excessive fabrication yield, which is crucial for scaling as much as industrial manufacturing.

“These chip units have already been used for parametric optical amplifiers, narrow-linewidth lasers and chip-scale frequency combs,” says Dr. Junqiu Liu who led the fabrication at EPFL’s Middle of MicroNanoTechnology (CMi). “We’re additionally trying ahead to seeing our expertise getting used for rising purposes resembling coherent LiDAR, photonic neural networks, and quantum computing.”

Reference: “Excessive-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits” by J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen and T. J. Kippenberg, 16 April 2021, Nature Communications.
DOI: 10.1038/s41467-021-21973-z





Source link

Leave a Comment

Your email address will not be published. Required fields are marked *